home *** CD-ROM | disk | FTP | other *** search
- *'<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>
- '>/\<
- '<\/> n0105 - Question B
- '>/\<
- '<\/> Highest Common Factor
- '>/\<
- '<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>
-
-
- @WeightingScore 9,2,1,1
-
- @atGraphic 32,14
- @Picture numbers\n0105a.bmp
-
- @at 106,24
- Find the #bhighest common #
- #bfactor# of the following
- numbers:
- @at 10,+8
- #^ #p24# #^ #p32# #^ #p40#
-
- @at 10,+62
- Which method do you want to practise?
- @at ,+6
- Listing the #bfactors# of each number...
- @at ,+4
- Using #bprime numbers#...
-
- @MultMode 2
- @atGraphic 214,164
- @Loop 2
- @HSPicture uncheck.bmp,check.bmp
- @atGraphic ,180
- @EndLoop
-
- @Answer 0,2
- @Feedback 0
- @FBMGoto Method_2
- @Answer 0,1
-
- '||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-
-
- @Question
-
- @at 10,+32
- What's the first step?
- @at ,+3
- #[K]
-
- @keyPointAnswer 1,10,find all the factors of each number
-
- @KeyPointFeedback 0,Wrong option
- The first step will be to find all the
- factors of each number.
-
-
- '|||||||||||||||||||/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/|||||||||||||||||||||
-
- @Question
-
- @NewPage
- @atGraphic 32,14
- @Picture numbers\n0105a.bmp
-
- @at 106,24
- Find the #bhighest common #
- #bfactor# of the following
- numbers:
-
- @at 10,+8
- #^ #p24# #^ #p32# #^ #p40#
- @at ,+2
- #T ;
- @MarkPos 1
- #T#T ;
- @MarkPos 2
- #T#T#T ;
- @MarkPos 3
-
- @InputWidth 20
- @GoPos 1
- @Loop 8
- #[N]
- @at ,+5
- @EndLoop
-
- @at 20,+4
- Enter the factors from lowest to highest.
- @MarkPos 4
-
- @Answer 2, 1,2,3,4,6,8,12,24
-
- @Feedback 1, 24,12,8,6,4,3,2,1
- Your answers are correct, but you've given
- them in reverse order. You must read questions
- carefully.
- @FBMGoto Next
-
- @Feedback E0.25,?,?,?,?,?,?,?,?
- That's partly right.*
- @Feedback 0,?,?,?,?,?,?,?,?
- The factors of a number are the whole numbers
- which can divide that number and leave no remainder.
- When you divide and there is no remainder, the number
- you divided by, and the result of the division are both factors:*
-
- @FeedbackC 1,Every number can be divided by 1, so #b1# is always a factor.
- @FeedbackC 2|7,24 ≈ 2 = 12... #b2# and #b12# are factors.
- @FeedbackC 3|6,24 ≈ 3 = 8... #b3# and #b8# are factors.
- @FeedbackC 4|5,24 ≈ 4 = 6... #b4# and #b6# are factors.
- @FeedbackC 8,Every number can be divided by itself, so #b24# is also a factor.*
- @FeedbackC 4|5,24 ≈ 5 = 4.8... This does not divide evenly, so 5 is not a factor.
- @FeedbackC 5|6,24 ≈ 7 = 3.429... 7 does not divide evenly, so it is not a factor either.
-
- @Label Next
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
- @Question
-
- @GoPos 2
- @Loop 6
- #[N]
- @at ,+5
- @EndLoop
-
- @Answer 2, 1,2,4,8,16,32
-
- @Feedback 1, 32,16,8,4,2,1
- Your answers are correct, but you've given
- them in reverse order. You must always read
- questions carefully.
- @FBMGoto Next
-
- @Feedback E0.3,?,?,?,?,?,?
- That's partly right.*
- @Feedback 0,?,?,?,?,?,?
- The factors of a number are the whole numbers
- which can divide that number and leave no remainder.
- When you divide and there is no remainder, the number
- you divided by, and the result of the division are both factors:*
-
- @FeedbackC 1,Every number can be divided by 1, so #b1# is always a factor.
- @FeedbackC 2|5,32 ≈ 2 = 16... #b2# and #b16# are factors.
- @FeedbackC 3|4,32 ≈ 4 = 8... #b4# and #b8# are factors.
- @FeedbackC 6,Every number can be divided by itself, so #b32# is also a factor.*
- @FeedbackC 4|5,32 ≈ 3 = 10.6... This does not divide evenly, so 3 is not a factor.
- @FeedbackC 5|6,32 ≈ 5 = 6.4... 5 does not divide evenly, so it is not a factor either.
-
- @Label Next
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Question
-
- @GoPos 3
- @Loop 8
- #[N]
- @at ,+5
- @EndLoop
-
- @Answer 2, 1,2,4,5,8,10,20,40
-
- @Feedback 1, 40,20,10,8,5,4,2,1
- Your answers are correct, but you've given
- them in reverse order. You must read questions
- carefully.
- @FBMGoto Next
-
- @Feedback E0.25,?,?,?,?,?,?,?,?
- That's partly right.*
- @Feedback 0,?,?,?,?,?,?,?,?
- The factors of a number are the whole numbers
- which can divide that number and leave no remainder.
- When you divide and there is no remainder, the number
- you divided by, and the result of the division are both factors:*
-
- @FeedbackC 1,Every number can be divided by 1, so #b1# is always a factor.
- @FeedbackC 2|7,40 ≈ 2 = 20... #b2# and #b20# are factors.
- @FeedbackC 3|6,40 ≈ 4 = 10... #b4# and #b10# are factors.
- @FeedbackC 4|5,40 ≈ 5 = 8... #b5# and #b8# are factors.
- @FeedbackC 8,Every number can be divided by itself, so #b40# is also a factor.*
- @FeedbackC 4|5,40 ≈ 3 = 13.333... This does not divide evenly, so 3 is not a factor.
- @FeedbackC 5|6,40 ≈ 6 = 6.666... 6 does not divide evenly, so it is not a factor either.
-
- @Label Next
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Question
-
- @GoPos 4
- @at 10,+6
- Now what do you do?
- @at ,+3
- #[K]
-
- @keyPointAnswer 1,9,find highest number in all the lists
-
- @KeyPointFeedback 0,Wrong option
- The final step is to find the highest factor that
- is common to all three numbers.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Question
-
- @InputWidth 24
-
- @at 100,+7
- #b Highest#
- #bCommon Factor#
- @at ,+3
- #[N]
-
- @Answer 1, 8
-
- @Feedback 0,?
- You should have found the highest number in
- all the lists. #b8# is the highest factor common
- to all three numbers.
-
- @Feedback 1
- That's right! Well done.
-
- @Goto End_of_Question
-
-
-
- '<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/> METHOD 2 <\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>
-
-
-
- @Label Method_2
-
- @Question
-
- @at 10,+32
- What's the first step?
- @at ,+3
- #[K]
-
- @keyPointAnswer 1,187,find the prime factors of each number
-
- @KeyPointFeedback 0,Wrong option
- The first step will be to find all the
- prime factors of each number.
-
-
- '|||||||||||||||||||/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/|||||||||||||||||||||
-
- @NewPage
- @atGraphic 32,14
- @Picture numbers\n0105a.bmp
-
- @at 106,24
- Find the #bhighest common #
- #bfactor# of the following
- numbers:
- @at 10,+8
- #^ #p24# #^ #p32# #^ #p40#;
- #T ;
- @MarkPos 1
- #T#T ;
- @MarkPos 2
- #T#T#T ;
- @MarkPos 3
-
- @InputWidth 20
- @GoPos 1
- #^ #^;
- @Loop 5
- #T#[N];
- @at ,+17
- #T#T#[N];
- @EndLoop
-
- @Answer 1.5, 2,12,2,6,2,3,3,1,,
-
- @Feedback E0.15,?,?,?,?,?,?,?,?,?,?
- @Feedback 0,?,?,?,?,?,?,?,?,?,?
-
- @FeedbackC 0,To find all the prime factors of any number,
- @FeedbackC 0,first divide by the smallest prime number as
- @FeedbackC 0,many times as possible. If the number will
- @FeedbackC 0,not divide evenly, divide by the next larger
- @FeedbackC 0,prime number, and repeat until you are left
- @FeedbackC 0,with a result of 1.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Label Next
- @Question
-
- @GoPos 1
- @at 20,+110
- The Prime Factors are...
-
- @InputWidth 14
- @GoPos 1
- @at -16,+140
- #[N];
- @at ,-10
- #[N];
- @at ,+10
- ╫ #[N];
- @at ,-10
- #[N]
-
- @Answer 0.5, 2,3,3,
- @Feedback 0.5
- @FBMGoto Next
- @Answer 0.5, 3,1,2,3
- @Feedback 0.5
- @FBMGoto Next
- @Answer 0.5, 2,3,3,1
- @Feedback E0.125,?,?,?,?
- @Feedback 0,?,?,?,?
-
- @FeedbackC 0,Once you've worked out all the prime factors,
- @FeedbackC 0,you should rewrite each factor once, raising
- @FeedbackC 0,it to an index to show how many lots there
- @FeedbackC 0,are.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
- @Label Next
- @Question
-
- @InputWidth 20
- @GoPos 2
- #^ #^;
- @Loop 5
- #T#[N];
- @at ,+17
- #T#T#[N];
- @EndLoop
-
- @Answer 1.5, 2,16,2,8,2,4,2,2,2,1
-
- @Feedback E0.15,?,?,?,?,?,?,?,?,?,?
- @Feedback 0,?,?,?,?,?,?,?,?,?,?
-
- @FeedbackC 0,To find all the prime factors of any number,
- @FeedbackC 0,first divide by the smallest prime number as
- @FeedbackC 0,many times as possible. If the number will
- @FeedbackC 0,not divide evenly, divide by the next larger
- @FeedbackC 0,prime number, and repeat until you are left
- @FeedbackC 0,with a result of 1.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Label Next
- @Question
-
- @InputWidth 14
- @GoPos 2
- @at +10,+140
- #[N];
- @at ,-10
- #[N]
-
- @Answer 0.5, 2,5
-
- @Feedback E0.25,?,?
- @Feedback 0,?,?
-
- @FeedbackC 0,Once you've worked out all the prime factors,
- @FeedbackC 0,you should rewrite each factor once, raising
- @FeedbackC 0,it to an index to show how many lots there
- @FeedbackC 0,are.
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Label Next
- @Question
-
- @InputWidth 20
- @GoPos 3
- #^ #^;
- @Loop 5
- #T#[N];
- @at ,+17
- #T#T#[N];
- @EndLoop
-
- @Answer 1.5, 2,20,2,10,2,5,5,1,,
-
- @Feedback E0.15,?,?,?,?,?,?,?,?,?,?
- @Feedback 0,?,?,?,?,?,?,?,?,?,?
-
- @FeedbackC 0,To find all the prime factors of any number,
- @FeedbackC 0,first divide by the smallest prime number as
- @FeedbackC 0,many times as possible. If the number will
- @FeedbackC 0,not divide evenly, divide by the next larger
- @FeedbackC 0,prime number, and repeat until you are left
- @FeedbackC 0,with a result of 1.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
-
- @Label Next
- @Question
-
- @InputWidth 14
- @GoPos 3
-
- @at -5,+140
- #[N];
- @at ,-10
- #[N];
- @at ,+10
- ╫ #[N];
- @at ,-10
- #[N]
-
- @Answer 0.5, 5,1,2,3
- @feedback 0.5
- @fbmGoto next
- @Answer 0.5, 2,3,5,1
-
- @Feedback E0.125,?,?,?,?
- @Feedback 0,?,?,?,?
-
- @FeedbackC 0,Once you've worked out all the prime factors,
- @FeedbackC 0,you should rewrite each factor once, raising
- @FeedbackC 0,it to an index to show how many lots there
- @FeedbackC 0,are.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
- @label next
- @Question
-
- @at 10,280
- Now what do you do?
- @at ,+3
- #[K]
-
- @keyPointAnswer 1,188,find the product
-
- @KeyPointFeedback 0,Wrong option
- The final step is to find the product of the
- highest prime factor to the highest power
- common to all three numbers.
-
-
- '/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
-
- @Question
-
- @InputWidth 14
- @at 10,240
- Highest Common Factor = #[N];
- @at ,-10
- #[N];
- @at ,+10
- = #[N]
-
- @Answer 1, 2,3,8
-
- @Feedback 0.5, 2,3,?
- @FBMGoto Calc
-
- @Feedback 0,?,?,?
- To find the highest common factor of a given
- number, you take only the prime factors which
- are in all of the lists, in this case 2. If the prime factors
- are raised to an index, you should take the lowest.
- In this case the highest common power of 2 is 3._
- @Label Calc
- The highest common factor of 24, 32 and 40 is:*
- #b2ë = 8#
-
- @Feedback 1
- That's right! Well done.
-
-
- '<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>/\<\/>
-
-
- @Label End_of_Question
-